Fast Converging CFIE-MoM Analysis of Electromagnetic Scattering from PEC Polygonal Cross-Section Closed Cylinders
نویسندگان
چکیده
The analysis of the electromagnetic scattering from perfectly electrically conducting (PEC) objects with edges and corners performed by means of surface integral equation formulations has drawbacks due to the interior resonances and divergence of the fields on geometrical singularities. The aim of this paper is to show a fast converging method for the analysis of the scattering from PEC polygonal cross-section closed cylinders immune from the interior resonance problems. The problem, formulated as combined field integral equation (CFIE) in the spectral domain, is discretized by means of Galerkin method with expansion functions reconstructing the behaviour of the fields on the wedges with a closed-form spectral domain counterpart. Hence, the elements of the coefficients’ matrix are reduced to single improper integrals of oscillating functions efficiently evaluated by means of an analytical asymptotic acceleration technique.
منابع مشابه
New MLFMA Formulation for Closed PEC Targets in the Vicinity of a Half Space
The multi-level fast multipole algorithm (MLFMA) is applied to the problem of scattering from a closed perfect electric conductor (PEC) in the presence of a half space. The combined-field integral equation (CFIE) employs a new electric-field integral equation (EFIE) formulation, robust to a high basis-function sample rate, relative to wavelength. The new EFIE formulation is discussed, as is its...
متن کاملThe Efficient Analysis of Electromagnetic Scattering from Composite Structures Using Hybrid Cfie-iefie
The efficient algorithm is presented for the analysis of electromagnetic scattering from composite structures with coexisting open and closed conductors. A hybrid combined-field integral equation-the improved electric-field integral equation (CFIE-IEFIE) formulation with the incomplete LU factorization (ILU) preconditioner is proposed. Numerical results are given to demonstrate that the efficie...
متن کاملA Survey of Various Frequency Domain Integral Equations for the Analysis of Scattering from Three-dimensional Dielectric Objects
In this paper, we present four different formulations for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional (3-D) homogeneous dielectric body in the frequency domain. The four integral equations treated here are the electric field integral equation (EFIE), the magnetic field integral equation (MFIE), the combined field integral equation (CFIE), and the PMCHW (...
متن کاملElectromagnetic Scattering from Vibrating Penetrable Objects Using a General Class of Time-Varying Sheet Boundary Conditions
Calculation of electromagnetic (EM) scattering from vibrating penetrable cylinders of arbitrary cross-section is presented using a general class of time-varying sheet boundary conditions (SBCs) in conjunction with the method of moments (MoM). Sheet impedance and admittance expressions are first derived from the exact scattering solution for a penetrable circular cylinder with perturbed radius. ...
متن کاملFast Multipole Method for Scattering from an Arbitrary PEC Target Above or Buried in a Lossy Half Space
The fast multipole method (FMM) was originally developed for perfect electric conductors (PECs) in free space, through exploitation of spectral properties of the free-space Green’s function. In the work reported here, the FMM is modified, for scattering from an arbitrary three-dimensional (3-D) PEC target above or buried in a lossy half space. The “near” terms in the FMM are handled via the ori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017